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All traditional logic habitually assumes that precise symbals are being employed. 1t is therefore not applicable to this terrestrial life but only to an
imagined celestial existence.

—BERTRAND RUSSELL

It is the mark of an instructed mind to rest satisfied with that degree of precision which the nature of the subject admits, and not to seek
exactness where only an approximation of the truth is possible.

—ARISTOTLE

1. Introduction

Human experts often feel in practicing their domains of expertise that they follow the model of reasoning used in
formal logic: from correct premises, sound inference rules produce new, guaranteed correct conclusions. On
reflection however, we realize there are many situations that will not fit this approach; that is, we must draw useful
conclusions from poorly formed and uncertain evidence using unsound inference rules.

Drawing useful conclusions from incomplete and imprecise data with unsound reasoning is not an impossible
task; we do it very successfully in almost every aspect of our daily life. We deliver correct medical diagnoses and
recommend treatment from ambiguous symptoms; we analyze problems with our cars or stereos; we comprehend
language statements that are often ambiguous or incomplete; and we successfully navigate the stock and money
markets.

To demonstrate the problem of reasoning under uncertainty, consider a simple rule for diagnosing problems with
an automobile:

if

the engine does not turn over, and
the lights do not come on

then

the problem is baltery or cables.

On the surface, this rule looks like a normal predicate relation to be used in sound inferencing (modus ponens).
However, it 1s not; it is heuristic in nature. It could be possible, though very unlikely, that the battery and cables are
fine but that the car simply has a bad starter motor and burned-out headlights. Failure of the engine to turn over and
the lights to come on does not necessarily imply that the battery and cables are bad. It is interesting that the converse
of the rule is true:

if

the problem is battery or cables
then

the engine does not turn over, and
the lights do not come on.

Barring the supernatural, with a dead battery, neither the lights nor the starter will work!
Our expert rule offers an example of abductive reasoning. More formally, abduction states that from P = Q and
Q, under the right conditions, it is possible to infer P. Abduction is an unsound rule of inference, meaning that the



conclusion is not necessarily true for every interpretation in which the premises are true. The conditions under which
abductive inferences are warranted requires considerable analysis (Stern 1996). In a knowledge-based system, we
often attach a certainty factor to the rule to measure our confidence in its conclusion. For example, the rule, P i Q
(.9), expresses the belief “If you believe P to be true, then you believe Q will happen 90% of the time.” Thus,
heuristic rules can express an explicit policy for belief.

Another constraining problem for expert reasoning is that useful results must be drawn from data sets with
missing, incomplete, or incorrect information. We may also use certainty factors to reflect our belief in the quality of
the data, for example, the lights do come on (.2) can indicate that the headlights do come on, but are weak and barely
visible. Finally, beliefs and imperfect data are propagated through rule sets. This paper shows how heuristic rules can
be combined to extend beliefs.

Although abduction is unsound, it is often essential to solving problems. The “logically correct” version of the
battery rule is not very useful in diagnosing car troubles since its premise, determining whether or not the battery is
bad, is our goal and its conclusions are the observable symptoms with which we must work. The rule must be used in
an abductive fashion, as are rules in most diagnostic situations. Faults or diseases cause (imply) symptoms, not the
other way around; but diagnosis must work from symptoms back to their causes.

In this paper, we discuss two of many possible ways of managing abductive inference and uncertainty, especially
as 1t is required for knowledge-intensive problem solving. First, in Section 2, we consider the formalisms of logic to
see how they might be extended to capture the constraints of abductive inference. Next, in Section 3, we consider
causal networks, a heuristic methodology for reasoning on multiple levels: first on the data level where information
about a situation is gathered and examined. On a second level, we reason about how pieces of information are part of
sets of symptoms or causal patterns. Finally, on the highest level, we are able to organize potential explanations of
discovered data sets. Causal networks have been developed in the domain of medicine, and our example is taken
from the literature of that area. They may be applied, however, to any sufficiently rich area of diagnosis.

2 Set Cover and Clause-based Abduction

As noted in the introduction, in abductive reasoning, we have rules of the form P => Q, along with a reasonable
belief in Q. We wish then to make a case for the truth of predicate P. Abductive reasoning is not sound, but what is
often called reasoning to the best explanation for the presence of the data Q. In this section, we look more closely at
the generation of explanations in domains of abductive inference.

The set cover approach defines an abductive explanation as a covering of the set of actual observations by a
binary relation expressing causal associations. Reggia et al. (1983} set cover approach assumes that causality can be
expressed through a simple causal relation R where R is a subset of {Causes X Observations}. Given a set of
observations S2, Reggia’s algorithm searches for a minimal set covers, i.e., sets of causes that comprise a minimal
cover of 52 using the causal relation R. The weakness of this approach is that it reduces explanation to a simple list
of causes. In situations where there are interrelated or interacting causes or where an understanding of the structure
or sequencing of causal interactions is required, the set cover model is inadequate.

Clause-based approaches to abduction on the other hand, rest on a more sophisticated notion of explanation.
Levesque (1989) defines an abductive explanation of some previously unexplained set of observations O as a
minimal set of hypotheses H consistent with an agent’s background knowledge K that entails O. More formally:

abduce(X, O) = H, if and only if:

1. K does not entail O
2. Hw K entails O

3. H w K is consistent, and
4. No subset of H has properties 1, 2, and 3.

Note that in general many sets of hypotheses may exist; that is, there may be many potential abductive sets of
explanations for a given set of observations O.

The clause-based definition of abductive explanation suggests a corresponding mechanism for explanation
discovery in the context of a knowledge-based system. If the explanatory hypotheses must entail the observations O,
then the way to construct a complete explanation is to reason backwards from O. One approach would be to start
from the conjunctive components of O and reason back from consequents to antecedents.



This “backchaining” approach also seems natural because the conditionals which support the backchaining can
readily be thought of as causal laws, thus capturing the pivotal role which causal knowledge plays in the construction
of explanations. The model is also convenient because it fits nicely to something with which the Al community
already has experience: backchaining and computational models for deduction.

There are also clever ways of finding the complete set of abductive explanations. Assumption-based truth-
maintenance systems ATMS (deKleer 1986), contain an algorithm for computing minimal support sets, the set of
(non-axiom) propositions that logically entail a given proposition in a theory. To find all possible abductive
explanations for a set of observations, we merely take the Cartesian product over the support sets, pruning as
necessary inconsistent conjunctions of hypotheses.

As simple, precise, and convenient as the clause-based account of abduction is, there are two related
shortcomings: high computational complexity and semantic weakness. Selman and Levesque (1990) found the
complexity of abduction tasks similar to that involved in computing support sets for an ATMS. The standard proof
that the ATMS problem is NP-hard depends on the existence of problem instances with an exponential number of
solutions. Selman and Levesque avoid the number of potential solutions complexity issue by asking whether finding
a smaller set of solutions is also NP-hard. Given a Homn clause knowledge base (Luger and Stubblefield 1998,
chapter 12}, Selman and Levesque produce an algorithm that finds a single explanation in order OQm) where k
indicates the mumber of propositional variables and n the number of occurrences of literals. However, when
restrictions are placed on the kinds of explanations sought, the problem again becomes NP-hard, even for Hom
clauses.

One interesting result from the Selman and Levesque (1990) analysis is the fact that adding certain kinds of
goals or restrictions to the abduction task actually makes computation significantly harder. From the naive viewpoint
of the human problem solver, this added complexity is surprising. Human problem solvers assume that the addition
of further constraints to the search for relevant explanations makes the task easier. The reason the abduction task is
harder in the clause-based model is that it only contributes additional clauses to be processed in the problem solving,
not additional structure to the activity of problem solving.

Explanation discovery in the clause-based model is characterized as the task of finding a set of hypotheses with
certain logical properties. These properties, including consistency with the background knowledge and entailment of
what is to be explained, are meant to capture the necessary conditions of explanations: the minimal conditions which
a set of explanatory hypotheses must satisfy in order to count as an abductive explanation. Proponents of this
approach believe that by adding additional constraints, the approach can be extended to provide a characterization of
good or reasonable explanations.

One simple strategy for selecting good explanations is to define a set of fact clauses that are abducible, that is,
from which candidate hypotheses must be chosen. This clause set allows search to be restricted in advance to those
factors that can potentially play a causal role in the chosen domain. Another strategy is to add selection criteria for
evaluating and choosing between explanations. Various selection criteria have been proposed, including decision
procedures based on prior probabilities and Bayesian style conditional probabilities (Pearl 1988). Other approaches
use simplicity and coherence (INg and Mooney 1990) as preferential criteria,

Both simplicity and coherence c¢an be seen as applications of Qccam’s razor (Luger and Stubblefield 1998).
Simplicity and coherence criteria are particularly appealing what is to be explained is not a simple proposition but
rather a set of propositions. Ng and Mooney (1990} have argued that a coherence metric is superior to a simplicity
metric for choosing explanations in the analysis of natural language text. They define coherence as a property of a
proof graph where explanations with more connections between any pair of observations and fewer disjoint partitions
are more coherent. The coherence criterion is based on the heuristic assumption that what we are asked to explain is
a single event or action with multiple aspects. The justification for a coherence metric in natural language
understanding is based on Gricean felicity conditions, that is, the speaker’s obligation to be coherent and pertinent
(Grice 1975). It is not difficult to extend their argument to a variety of other situations. For example in diagnosis, the
observations which comprise the initial set of things to be explained are brought together because they are believed
to be related to the same underlying fault or failure mechanism.

Another mechanism for explanation selection, cost-based abduction, is also interesting because it takes into
account both properties of the hypothesis set as well as properties of the proof procedure. Cost-based abduction
places a cost on potential hypotheses as well as a cost on rules. The total cost of the explanation is computed on the
basis of the total cost of the hypotheses plus the cost of the rules used to abduce the hypotheses. Competing
hypothesis sets are then compared according to cost. One natural semantic that can be attached to this scheme is the
probabilistic one (Charniak and Shimeny 1990). Higher costs for hypotheses represent less likely events; higher
costs for rules represent less probable causal mechanisms. Cost-based metrics can be combined with least-cost search
algorithms, such as best-first search, considerably reducing the computational complexity of the task.



In Section 3, we consider architectures for reasoning that supports the manipulation of network-based
descriptions of the world, a relaxation of the strictures of logic, but an explicit attempt to generate meaningful
explanations.

3. Causal Networks

Causal models depict relationships as links between nodes in a graph or a network of nodes. These models are used
quite extensively in a number of areas of reasoning, including diagnosis in medicine, the analysis of faults in
electronic circuits, and story understanding. The approach in these applications is straightforward: map observations
onto a network of nodes and then link the network nodes in a causally coherent pattern.

One of the first efforts to build an explicit model of causal relationships was for the diagnosis of various forms
of the eye disease glaucoma. This program, CASNET (Weiss et al. 1977), was a kind of semantic network that
represented a dynamic process occurring over time as a causal relationship among states. This network also related
the nodes of the causal process to external manifestations; the observations, the evidence, and in this case medical
classifications, that is, to diagnostic categories. More precisely, this representation has three connected levels: first, a
level of pathophysiological states, second, a level of observations, and finally, a level of disease categories.

At the core of the model is the network of pathophysiological states connected by causal links. The notion of a
“causal link” is interpreted loosely and not intended for exact Bayesian correlational analysis. The links connecting
states are “weighted” with numerical confidence measures from 1, rarely causes, to 5, almost always causes, the
pathophysiological states.

A complete causal pathway from a start node to a terminal node represents a complete disease process, while
pathways that end in non-terminal nodes represent partial or incomplete evolution of a disease process. Confirmation
of a state is derived either from associated observations, where the links between observations and
pathophysiological states also have weights, or indirectly through the causal link to another state for which there is
some evidence. Activation of the network proceeds by a weight-propagation algorithm (Weiss et al. 1977). The
network state then drives an investigation based on the selection of tests suggested by the linked states. The final
diagnosis is reflected by the classification of the paths found through the causal network.

The CASNET model handles causality somewhat superficially, representing causal processes as linear
assoclations between states. Furthermore, the topological structure of the network is built by the system designer
before the analysis begins, and modeling the physiological process involves little more then weight propagation and
node activation through this pre-assembled net. A more sophisticated use of causal representations for diagnosis
appeared shortly after CASNET. ABEL (Patil et al. 1981) reasons about Acid Base and ELectrolyte imbalances in
patients. ABEL’s architecture is based on the observation that clinicians consider a case at several levels of detail
that are eventually integrated into a higher level categorical understanding of the disease process, affording a detailed
interpretation of the data collected.

Given patient data, ABEL develops a patient-specific model consisting of an interpretation of the data in an
hierarchical casual network. ABEL uses initial patient data to generate a patient specific model. It then uses the same
procedures to suggest clinical measurements and patient specific model revision. Unlike CASNET, where the causal
network is constructed when the program was designed, ABEL dynamically instantiates its general medical
knowledge in response to the data. ABEL’s network has three levels, reflecting the different levels of detail at which
human diagnosticians typically reason. These levels, as can be seen in Figure 1, are the clinical, the
pathophysiological, and an intermediate transfer level.

Construction of the causal network is accomplished through five operators: aggregation, elaboration,
decomposition, summation, and projection. Aggregation summarizes the description of the causal network at a given
level into the next higher aggregate level. There are two types of aggregation, focal aggregation, which summarizes a
node and its immediate causally connected neighborhood by a single node, and causal aggregation, which
summarizes a chain of cause~effect relations by a single cause and effect relation. Elaboration is the inverse of
aggregation, serving to expand the causal relationships represented at a given level into a more detailed set of
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Figure 1. A Cansal Network in ABEL.

relations at a lower level. There are two types of elaboration, focal and causal, the duals of the aggregation operators
just mentioned.



The decomposition and summation operators telate components at the same level of detail, constraining a
causally connected region of the network and enforcing the consistency of the summation of quantities distributed
over causal links. Projection, perhaps the most interesting operator, is similar to elaboration in that it serves to
expand a region of the network. It is essentially an abductive operator in that it is used to extrapolate the hypothetical
causal relationships needed to account for otherwise unexplainable states or quantities in the network. Projection can
serve to generate expectations and motivates the collection of diagnostic data.

A causal link in ABEL is a mapping relation that takes attributes of cause—instance pairs into attributes of an
effect—instance. Causal links themselves have contextual attributes which, when they differ from default information,
can induce functional changes in the mapping relation. This mapping relation supports the numerical summation and
decomposition operators, which allow the system to reason about quantitative information such as electrolyte levels
and pH. ABEL represented the state-of-the-art in clinical reasoning for its time and still remains unsurpassed in its
hierarchical integration of causal reasoning across multiple levels of detail.

The causal network addresses the problem of abduction by explicitly developing this hierarchy relating problem
data to causal mechanisms. Experts in a problem domain develop these hierarchies through careful analysis of their
own diagnostic skills. Then, in addressing a new situation for analysis, the data available instantiate the appropriate
parts of this network. Problem solving happens as the system propagates these constraints through the network. This
is, of course, a highly interactive system as partial solutions can recommend more data acquisition in the context of
attempting to establish a particular explanation of the problem.

Another approach to causal reasoning in well-understood contexts, scripts, is described in Luger and
Stubblefield (1998). In scripts there are no certainty factors, simply a set of data structures that are intended to
represent reasoning within well-understood situations, such as going to a restaurant or attending a child's birthday

party.

4 Conclusions

We have discussed two relatively formal methods for accomplishing the abductive task. These are the set cover
approach and clause-based abductive chaining. There are a number of further approaches available based on
extensions of first order logic. These extensions include truth maintenance systems, circumscriptive logics, and other
forms of nonmonotonic reasoning.

A second general class of approaches is based on network representations. In network approaches, sound
inference rules are replaced with carefully crafted reasoning structures that capture the the domain expert’s
knowledge of causal relationships. Other heuristic approaches include the work of Stern in the analysis of failures of
discrete component semiconductors (Stern 1996; Stern and Luger 1992, 1996). Finally, Bayesian belief networks
support a well founded probabilistic approach to diagnostic problem solving.

Heuristic approaches to uncertain reasoning, i.e., those used in expert systems, should also not be overlooked.
These involve straightforward algebraic techniques to capture and propagate uncertain information through
imprecise rules. Especially important here are the Stanford Certainty Factor Algebra, the Dempster-Shafer calculus,
and in more limited contexts, fuzzy systems. Examples and further references for all the approaches mentioned in
this concluding section may be found in Luger and Stubblefield (1998).
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